
feedcache Documentation
Release 1.4.1

Doug Hellmann

March 13, 2013

CONTENTS

i

ii

feedcache Documentation, Release 1.4.1

The feedcache package implements a class to wrap Mark Pilgrim’s Universal Feed Parser module so that parameters
can be used to cache the feed results locally instead of fetching the feed every time it is requested. Uses both etag and
modified times for caching. The cache is parameterized to use different backend storage options.

Contents:

CONTENTS 1

feedcache Documentation, Release 1.4.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

1.1 Cache

The Cache class manages feed data, fetching updates when the local contents have expired. It uses feedparser to
retrieve the data, and supports both ETag and If-Modified-Since headers.

1.2 Storage API

Each Cache uses a storage object to hold on to the data. The storage object must support the dictionary API. Keys
are the URLs of the feed. The data stored includes, but is not limited to, the parsed result of the feed.

1.3 Cache + shelve

Using shelve by itself works in a simple single-threaded case but it isn’t clear from its documentation whether shelve
supports write access from multiple concurrent threads. To ensure the shelf is not corrupted, a thread lock should be
used. CacheStorageLock is a simple wrapper around shelve that uses a lock to prevent more than one thread from
accessing the shelf simultaneously.

See feedcache/cachestoragelock.py and feedcache/example.py for more details.

1.4 Cache + shove

Using CacheStorageLock protects against corruption caused by multiple threads in the same process, but shelve
still only allows one process to open a shelf file to write to it. In applications with multiple processes that need to
modify the cache, the shove module, by L. C. Rees, is an excellent alternative. shove offers support for a variety of
back-end storage options, including: relational databases, BSD-style databases, Amazon’s S3 storage service, pickle
files, and others.

See feedcache/example_threads.py for more details.

3

http://pypi.python.org/pypi/feedparser
http://pypi.python.org/pypi/shove

feedcache Documentation, Release 1.4.1

4 Chapter 1. Introduction

CHAPTER

TWO

CACHING RSS FEEDS WITH
FEEDCACHE

Note: This article was originally printed in Python Magazine Volume 1 Issue 11, November, 2007.

The past several years have seen a steady increase in the use of RSS and Atom feeds for data sharing. Blogs, podcasts,
social networking sites, search engines, and news services are just a few examples of data sources delivered via such
feeds. Working with internet services requires care, because inefficiencies in one client implementation may cause
performance problems with the service that can be felt by all of the consumers accessing the same server. In this
article, I describe the development of the feedcache package, and give examples of how you can use it to optimize the
use of data feeds in your application.

I frequently find myself wanting to listen to one or two episodes from a podcast, but not wanting to subscribe to the
entire series. In order to scratch this itch, I built a web based tool, hosted at http://www.castsampler.com/, to let me
pick and choose individual episodes from a variety of podcast feeds, then construct a single feed with the results. Now
I subscribe to the single feed with my podcast client, and easily populate it with new episodes when I encounter any
that sound interesting. The feedcache package was developed as part of this tool to manage accessing and updating
the feeds efficiently, and has been released separately under the BSD license.

2.1 Example Feed Data

The two most common publicly implemented formats for syndicating web data are RSS (in one of a few versions) and
Atom. Both formats have a similar structure. Each feed begins with basic information about the data source (title, link,
description, etc.). The introductory information is followed by a series of “items”, each of which represents a resource
like a blog post, news article, or podcast. Each item, in turn, has a title, description, and other information like when
it was written. It may also refer to one or more attachments, or enclosures.

Listing 1 shows a sample RSS 2.0 feed and Listing 2 shows a sample Atom feed. Each sample listing contains one
item with a single podcast enclosure. Both formats are XML, and contain essentially the same data. They use slightly
different tag names though, and podcast enclosures are handled differently between the two formats, which can make
working with different feed formats more work in some environments. Fortunately, Python developers do not need to
worry about the differences in the feed formats, thanks to the Universal Feed Parser.

2.1.1 Listing 1

<?xml version="1.0" encoding="utf-8"?>

<rss version="2.0">

5

http://www.castsampler.com/
http://www.doughellmann.com/projects/feedcache/

feedcache Documentation, Release 1.4.1

<channel>
<title>Sample RSS 2.0 Feed</title>
<link>http://www.example.com/rss.xml</link>
<description>Sample feed using RSS 2.0 format.</description>
<language>en-us</language>
<item>

<title>item title goes here</title>
<link>http://www.example.com/items/1/</link>
<description>description goes here</description>
<author>authoremail@example.com (author goes here)</author>
<pubDate>Sat, 4 Aug 2007 15:00:36 -0000</pubDate>
<guid>http://www.example.com/items/1/</guid>
<enclosure url="http://www.example.com/items/1/enclosure" length="100" type="audio/mpeg">
</enclosure>

</item>
</channel>

</rss>

2.1.2 Listing 2

<?xml version="1.0" encoding="utf-8"?>

<feed xmlns="http://www.w3.org/2005/Atom" xml:lang="en-us">
<title>Sample Atom Feed</title>
<link href="http://www.example.com/" rel="alternate"></link>
<link href="http://www.example.com/atom.xml" rel="self"></link>
<id>http://www.example.com/atom.xml</id>
<updated>2007-08-04T15:00:36Z</updated>
<entry>
<title>title goes here</title>
<link href="http://www.example.com/items/1/" rel="alternate"></link>
<updated>2007-08-04T15:00:36Z</updated>
<author>

<name>author goes here</name>
<email>authoremail@example.com</email>

</author>
<id>http://www.example.com/items/1/</id>
<summary type="html">description goes here</summary>
<link length="100" href="http://www.example.com/items/1/enclosure" type="audio/mpeg" rel="enclosure">
</link>

</entry>
</feed>

2.2 Universal Feed Parser

Mark Pilgrim’s Universal Feed Parser is an open source module that manages most aspects of downloading and parsing
RSS and Atom feeds. Once the feed has been downloaded and parsed, the parser returns an object with all of the parsed
data easily accessible through a single API, regardless of the original feed format.

Listing 3 shows a simple example program for accessing feeds with feedparser. On line 9, a URL from the command
line arguments is passed to feedparser.parse() to be downloaded and parsed. The results are returned as a
FeedParserDict. The properties of the FeedParserDict can be accessed via the dictionary API or using attribute names
as illustrated on line 10.

6 Chapter 2. Caching RSS Feeds With feedcache

http://www.feedparser.org/

feedcache Documentation, Release 1.4.1

2.2.1 Listing 3

1 #!/usr/bin/env python
2 """Print contents of feeds specified on the command line.
3 """
4

5 import feedparser
6 import sys
7

8 for url in sys.argv[1:]:
9 data = feedparser.parse(url)

10 for entry in data.entries:
11 print ’%s: %s’ % (data.feed.title, entry.title)

When the sample program in Listing 3 is run with the URL for the feed of feedcache project releases, it shows the
titles for the releases available right now:

$ python Listing3.py http://feeds.feedburner.com/FeedcacheReleases
feedcache Releases: feedcache 0.1
feedcache Releases: feedcache 0.2
feedcache Releases: feedcache 0.3
feedcache Releases: feedcache 0.4
feedcache Releases: feedcache 0.5

Every time the program runs, it fetches the entire feed, whether the contents have changed or not. That inefficiency
might not matter a great deal for a client program that is not run frequently, but the inefficiencies add up on the server
when many clients access the same feed, especially if they check the feed on a regular basis. This inefficient behavior
can become an especially bad problem for the server if the feed contents are produced dynamically, since each client
incurs a certain amount of CPU, I/O, and bandwidth load needed to produce the XML representation of the feed. Some
sites are understandably strict about how often a client can retrieve feeds, to cut down on heavy bandwidth and CPU
consumers. Slashdot, for example, returns a special feed with a warning to any client that accesses their RSS feed too
frequently over a short span of time.

2.3 A Different Type of Podcast Aggregator

A typical aggregator design would include a monitor to regularly download the feeds and store the fresh information
about the feed and its contents in a database. The requirements for CastSampler are a little different, though.

CastSampler remembers the feeds to which a user has subscribed, but unlike other feed aggregators, it only downloads
the episode metadata while the user is choosing episodes to add to their download feed. Since the user does not
automatically receive every episode of every feed, the aggregator does not need to constantly monitor all of the feeds.
Instead, it shows a list of episodes for a selected feed, and lets the user choose which episodes to download. Then it
needs to remember those selected episodes later so it can produce the combined feed for the user’s podcast client.

If every item from every feed was stored in the database, most of the data in the database would be for items that were
never selected for download. There would need to be a way to remove old data from the database when it expired or
was no longer valid, adding to the maintenance work for the site. Instead, CastSampler only uses the database to store
information about episodes selected by the user. The rest of the data about the feed is stored outside of the database
in a form that makes it easier to discard old data when the feed is updated. This division eliminates a lot of the data
management effort behind running the site.

2.3. A Different Type of Podcast Aggregator 7

feedcache Documentation, Release 1.4.1

2.4 Feedcache Requirements

An important goal for this project was to make CastSampler a polite consumer of feeds, and ensure that it did not
overload servers while a user was selecting podcast episodes interactively. By caching the feed data for a short
period of time, CastSampler could avoid accessing feeds every time it needed to show the feed data. A persistent
cache, written to disk, would let the data be reused even if the application was restarted, such as might happen during
development. Using a cache would also improve responsiveness, since reading data from the local disk would be faster
than fetching the feed from the remote server. To further reduce server load, feedcache is designed to take advantage
of conditional GET features of HTTP, to avoid downloading the full feed whenever possible.

Another goal was to have a small API for the cache. It should take care of everything for the caller, so there would not
need to be many functions to interact with it. To retrieve the contents of a feed, the caller should only have to provide
the URL for that feed. All other information needed to track the freshness of the data in the cache would be managed
internally.

It was also important for the cache to be able to store data in multiple ways, to make it more flexible for other
programmers who might want to use it. Although CastSampler was going to store the cache on disk, other applications
with more computing resources or tighter performance requirements might prefer to hold the cache in memory. Using
disk storage should not be hard coded into the cache management logic.

These requirements led to a design which split the responsibility for managing the cached data between two objects.
The Cache object tracks information about a feed so it can download the latest version as efficiently as possible, only
when needed. Persistent storage of the data in the cache is handled by a separate back end storage object. Dividing
the responsibilities in this way maximizes the flexibility of the Cache, since it can concentrate on tracking whether
the feed is up to date without worrying about storage management. It also let Cache users take advantage of multiple
storage implementations.

2.5 The Cache Class

Once the basic requirements and a skeleton design were worked out, the next step was to start writing tests so the
implementation of Cache could begin. Working with a few simple tests would clarify how a Cache user would want
to access feeds. The first test was to verify that the Cache would fetch feed data.

import unittest, cache
class CacheTest(unittest.TestCase):

def testFetch(self):
c = cache.Cache({})
parsed_feed = c.fetch(’http://feeds.feedburner.com/FeedcacheReleases’)
self.failUnless(parsed_feed.entries)

Since the design separated storage and feed management responsibilities, it was natural to pass the storage handler to
the Cache when it is initialized. The dictionary API is used for the storage because there are several storage options
available that support it. The shelve module in the Python standard library stores data persistently using an object that
conforms to the dictionary API, as does the shove library from L.C. Rees. Either library would work well for the final
application. For initial testing, using a simple dictionary to hold the data in memory was convenient, since that meant
the tests would not need any external resources.

After constructing the Cache, the next step in the test is to retrieve a feed. I considered using using the
__getitem__() hook, but since Cache would not support any of the other dictionary methods, I rejected it in
favor of an explicit method, fetch(). The caller passes a feed URL to fetch(), which returns a FeedParserDict
instance. Listing 4 shows the first version of the Cache class that works for the test as it is written. No actual caching
is being done, yet. The Cache instance simply uses the feedparser module to retrieve and parse the feed.

8 Chapter 2. Caching RSS Feeds With feedcache

http://pypi.python.org/pypi/shove

feedcache Documentation, Release 1.4.1

2.5.1 Listing 4

1 #!/usr/bin/env python
2 """The first version of Cache
3 """
4

5 import unittest
6 import feedparser
7

8 class Cache:
9 def __init__(self, storage):

10 self.storage = storage
11 return
12

13 def fetch(self, url):
14 return feedparser.parse(url)
15

16 class CacheTest(unittest.TestCase):
17

18 def testFetch(self):
19 c = Cache({})
20 parsed_feed = c.fetch(’http://feeds.feedburner.com/FeedcacheReleases’)
21 self.failUnless(parsed_feed.entries)
22 return
23

24 if __name__ == ’__main__’:
25 unittest.main()

2.6 Throttling Downloads

Now that Cache could successfully download feed data, the first optimization to make was to hold on to the data and
track its age. Then for every call to fetch(), Cache could first check to see if fresh data was already available
locally before going out to the server to download the feed again.

Listing 5 shows the version of Cache with a download throttle, in the form of a timeToLiveSeconds parameter.
Items already in the cache will be reused until they are older than timeToLiveSeconds. The default value for
timeToLiveSeconds means that any given feed will not be checked more often than every five minutes.

2.6.1 Listing 5

1 #!/usr/bin/env python
2 """The first version of Cache
3 """
4

5 import time
6 import unittest
7 import feedparser
8

9 class Cache:
10 def __init__(self, storage, timeToLiveSeconds=300):
11 self.storage = storage
12 self.time_to_live = timeToLiveSeconds
13 return
14

2.6. Throttling Downloads 9

feedcache Documentation, Release 1.4.1

15 def fetch(self, url):
16 now = time.time()
17 cached_time, cached_content = self.storage.get(url, (None, None))
18

19 # Does the storage contain a version of the data
20 # which is older than the time-to-live?
21 if cached_time is not None:
22 age = now - cached_time
23 if age <= self.time_to_live:
24 return cached_content
25

26 parsed_data = feedparser.parse(url)
27 self.storage[url] = (now, parsed_data)
28 return parsed_data
29

30 class CacheTest(unittest.TestCase):
31

32 def testFetch(self):
33 c = Cache({})
34 parsed_feed = c.fetch(’http://feeds.feedburner.com/FeedcacheReleases’)
35 self.failUnless(parsed_feed.entries)
36 return
37

38 def testReuseContentsWithinTimeToLiveWindow(self):
39 url = ’http://feeds.feedburner.com/FeedcacheReleases’
40 c = Cache({ url:(time.time(), ’prepopulated cache’)})
41 cache_contents = c.fetch(url)
42 self.failUnlessEqual(cache_contents, ’prepopulated cache’)
43 return
44

45 if __name__ == ’__main__’:
46 unittest.main()

The new implementation of fetch() stores the current time along with the feed data when the storage is updated.
When fetch() is called again with the same URL, the time in the cache is checked against the current time to
determine if the value in the cache is fresh enough. The test on line 38 verifies this behavior by pre-populating the
Cache‘s storage with data, and checking to see that the existing cache contents are returned instead of the contents of
the feed.

2.7 Conditional HTTP GET

Conditional HTTP GET allows a client to tell a server something about the version of a feed the client already has. The
server can decide if the contents of the feed have changed and, if they have not, send a short status code in the HTTP
response instead of a complete copy of the feed data. Conditional GET is primarily a way to conserve bandwidth, but
if the feed has not changed and the server’s version checking algorithm is efficient then the server may use fewer CPU
resources to prepare the response, as well.

When a server implements conditional GET, it uses extra headers with each response to notify the client. There are two
headers involved, and the server can use either or both together, in case the client only supports one. Cache supports
both headers.

Although timestamps are an imprecise way to detect change, since the time on different servers in a pool might
vary slightly, they are simple to work with. The Last-Modified header contains a timestamp value that indi-
cates when the feed contents last changed. The client sends the timestamp back to the server in the next request as
If-Modified-Since. The server then compares the dates to determine if the feed has been modified since the last
request from the client.

10 Chapter 2. Caching RSS Feeds With feedcache

feedcache Documentation, Release 1.4.1

A more precise way to determine if the feed has changed is to use an Entity Tag in the ETag header. An ETag is
a hashed representation of the feed state, or of a value the server can use to quickly determine if the feed has been
updated. The data and algorithm for computing the hash is left up to the server, but it should be less expensive than
returning the feed contents or there won’t be any performance gains. When the client sees an ETag header, it can
send the associated value back to the server with the next request in the If-None-Match request header. When the
server sees If-None-Match, it computes the current hash and compares it to the value sent by the client. If they
match, the feed has not changed.

When using either ETag or modification timestamps, if the server determines that the feed has not been updated since
the previous request, it returns a response code of 304, or “Not Modified” and includes nothing in the body of the
response. When it sees the 304 status in the response from the server, the client should reuse the version of the feed
it already has.

2.8 Creating a Test Server

In order to write correct tests to exercise conditional GET in feedcache, more control over the server would be impor-
tant. The feedburner URL used in the earlier tests might be down, or return different data if a feed was updated. It
would be necessary for the server to respond reliably with data the test code knew in advance, and to be sure it would
not stop responding if it was queried too often by the tests. The tests also control which of the headers (ETag or
If-Modified-Since) was used to determine if the feed had changed, so both methods could be tested indepen-
dently. The solution was to write a small test HTTP server that could be managed by the unit tests and configured as
needed. Creating the test server was easy, using a few standard library modules.

The test server code, along with a base class for unit tests that use it, can be found in Listing 6. The
TestHTTPServer (line 91) is derived from BaseHTTPServer.HTTPServer. The serve_forever()
method (line 112) has been overridden with an implementation that checks a flag after each request to see if the server
should keep running. The test harness sets the flag to stop the test server after each test. The serve_forever()
loop also counts the requests successfully processed, so the tests can determine how many times the Cache fetches a
feed.

2.8.1 Listing 6

1 #!/usr/bin/env python
2 """Simple HTTP server for testing the feed cache.
3 """
4

5 import BaseHTTPServer
6 import email.utils
7 import logging
8 import md5
9 import threading

10 import time
11 import unittest
12 import urllib
13

14

15 def make_etag(data):
16 """Given a string containing data to be returned to the client,
17 compute an ETag value for the data.
18 """
19 _md5 = md5.new()
20 _md5.update(data)
21 return _md5.hexdigest()
22

2.8. Creating a Test Server 11

feedcache Documentation, Release 1.4.1

23

24 class TestHTTPHandler(BaseHTTPServer.BaseHTTPRequestHandler):
25 "HTTP request handler which serves the same feed data every time."
26

27 FEED_DATA = """<?xml version="1.0" encoding="utf-8"?>
28

29 <feed xmlns="http://www.w3.org/2005/Atom" xml:lang="en-us">
30 <title>CacheTest test data</title>
31 <link href="http://localhost/feedcache/" rel="alternate"></link>
32 <link href="http://localhost/feedcache/atom/" rel="self"></link>
33 <id>http://localhost/feedcache/</id>
34 <updated>2006-10-14T11:00:36Z</updated>
35 <entry>
36 <title>single test entry</title>
37 <link href="http://www.example.com/" rel="alternate"></link>
38 <updated>2006-10-14T11:00:36Z</updated>
39 <author>
40 <name>author goes here</name>
41 <email>authoremail@example.com</email>
42 </author>
43 <id>http://www.example.com/</id>
44 <summary type="html">description goes here</summary>
45 <link length="100" href="http://www.example.com/enclosure" type="text/html" rel="enclosure">
46 </link>
47 </entry>
48 </feed>"""
49

50 # The data does not change, so save the ETag and modified times
51 # as class attributes.
52 ETAG = make_etag(FEED_DATA)
53 MODIFIED_TIME = email.utils.formatdate(usegmt=True)
54

55 def do_GET(self):
56 "Handle GET requests."
57

58 if self.path == ’/shutdown’:
59 # Shortcut to handle stopping the server
60 self.server.stop()
61 self.send_response(200)
62

63 else:
64 incoming_etag = self.headers.get(’If-None-Match’, None)
65 incoming_modified = self.headers.get(’If-Modified-Since’, None)
66

67 send_data = True
68

69 # Does the client have the same version of the data we have?
70 if self.server.apply_modified_headers:
71 if incoming_etag == self.ETAG:
72 self.send_response(304)
73 send_data = False
74

75 elif incoming_modified == self.MODIFIED_TIME:
76 self.send_response(304)
77 send_data = False
78

79 # Now optionally send the data, if the client needs it
80 if send_data:

12 Chapter 2. Caching RSS Feeds With feedcache

feedcache Documentation, Release 1.4.1

81 self.send_response(200)
82 self.send_header(’Content-Type’, ’application/atom+xml’)
83 self.send_header(’ETag’, self.ETAG)
84 self.send_header(’Last-Modified’, self.MODIFIED_TIME)
85 self.end_headers()
86

87 self.wfile.write(self.FEED_DATA)
88 return
89

90

91 class TestHTTPServer(BaseHTTPServer.HTTPServer):
92 """HTTP Server which counts the number of requests made
93 and can stop based on client instructions.
94 """
95

96 def __init__(self, applyModifiedHeaders=True):
97 self.apply_modified_headers = applyModifiedHeaders
98 self.keep_serving = True
99 self.request_count = 0

100 BaseHTTPServer.HTTPServer.__init__(self, (’’, 9999), TestHTTPHandler)
101 return
102

103 def getNumRequests(self):
104 "Return the number of requests which have been made on the server."
105 return self.request_count
106

107 def stop(self):
108 "Stop serving requests, after the next request."
109 self.keep_serving = False
110 return
111

112 def serve_forever(self):
113 "Main loop for server"
114 while self.keep_serving:
115 self.handle_request()
116 self.request_count += 1
117 return
118

119

120 class HTTPTestBase(unittest.TestCase):
121 "Base class for tests that use a TestHTTPServer"
122

123 TEST_URL = ’http://localhost:9999/’
124

125 CACHE_TTL = 0
126

127 def setUp(self):
128 self.server = self.getServer()
129 self.server_thread = threading.Thread(target=self.server.serve_forever)
130 self.server_thread.setDaemon(True) # so the tests don’t hang if cleanup fails
131 self.server_thread.start()
132 return
133

134 def getServer(self):
135 "Return a web server for the test."
136 return TestHTTPServer()
137

138 def tearDown(self):

2.8. Creating a Test Server 13

feedcache Documentation, Release 1.4.1

139 # Stop the server thread
140 ignore = urllib.urlretrieve(’http://localhost:9999/shutdown’)
141 time.sleep(1)
142 self.server.server_close()
143 self.server_thread.join()
144 return
145

146

147 class HTTPTest(HTTPTestBase):
148

149 def testResponse(self):
150 # Verify that the server thread responds
151 # without error.
152 filename, response = urllib.urlretrieve(self.TEST_URL)
153 return
154

155 if __name__ == ’__main__’:
156 unittest.main()

The test server processes incoming HTTP requests with TestHTTPHandler (line 24), derived from
BaseHTTPServer.BaseHTTPRequestHandler. TestHTTPHandler implements do_GET() (line 55) to
respond to HTTP GET requests. Feed data for the tests is hard coded in the FEED_DATA class attribute (line 27).
The URL path /shutdown is used to tell the server to stop responding to requests. All other paths are treated as re-
quests for the feed data. The requests are processed by checking the If-None-Match and If-Modified-Since
headers, and responding either with a 304 status or with the static feed data.

HTTPTestBase is a convenience base class to be used by other tests. It manages a TestHTTPServer instance
in a separate thread, so the tests can all run in a single process. Listing 7 shows what the existing tests look like,
rewritten to use the HTTPTestBase as a base class. The only differences are the base class for the tests and the use
of self.TEST_URL, which points to the local test server instead of the feedburner URL from Listing 5.

2.8.2 Listing 7

1 #!/usr/bin/env python
2 """The first version of Cache
3 """
4

5 import time
6 import unittest
7 import feedparser
8 from Listing5 import Cache
9 from Listing6 import HTTPTestBase

10

11 class CacheTest(HTTPTestBase):
12

13 def testFetch(self):
14 c = Cache({})
15 parsed_feed = c.fetch(self.TEST_URL)
16 self.failUnless(parsed_feed.entries)
17 return
18

19 def testReuseContentsWithinTimeToLiveWindow(self):
20 c = Cache({ self.TEST_URL:(time.time(), ’prepopulated cache’)})
21 cache_contents = c.fetch(self.TEST_URL)
22 self.failUnlessEqual(cache_contents, ’prepopulated cache’)
23 return
24

14 Chapter 2. Caching RSS Feeds With feedcache

feedcache Documentation, Release 1.4.1

25 if __name__ == ’__main__’:
26 unittest.main()

2.9 Implementing Conditional HTTP GET

With these testing tools in place, the next step was to enhance the Cache class to monitor and use the conditional
HTTP GET parameters. Listing 8 shows the final version of Cache with these features. The fetch() method has
been enhanced to send the ETag and modified time from the cached version of the feed to the server, when they are
available.

2.9.1 Listing 8

1 #!/usr/bin/env python
2 """Cache class with conditional HTTP GET support.
3 """
4

5 import feedparser
6 import time
7 import unittest
8 import UserDict
9

10 import Listing6 # For the test base class
11

12 class Cache:
13

14 def __init__(self, storage, timeToLiveSeconds=300, userAgent=’feedcache’):
15 self.storage = storage
16 self.time_to_live = timeToLiveSeconds
17 self.user_agent = userAgent
18 return
19

20 def fetch(self, url):
21 modified = None
22 etag = None
23 now = time.time()
24

25 cached_time, cached_content = self.storage.get(url, (None, None))
26

27 # Does the storage contain a version of the data
28 # which is older than the time-to-live?
29 if cached_time is not None:
30 if self.time_to_live:
31 age = now - cached_time
32 if age <= self.time_to_live:
33 return cached_content
34

35 # The cache is out of date, but we have
36 # something. Try to use the etag and modified_time
37 # values from the cached content.
38 etag = cached_content.get(’etag’)
39 modified = cached_content.get(’modified’)
40

41 # We know we need to fetch, so go ahead and do it.
42 parsed_result = feedparser.parse(url,

2.9. Implementing Conditional HTTP GET 15

feedcache Documentation, Release 1.4.1

43 agent=self.user_agent,
44 modified=modified,
45 etag=etag,
46)
47

48 status = parsed_result.get(’status’, None)
49 if status == 304:
50 # No new data, based on the etag or modified values.
51 # We need to update the modified time in the
52 # storage, though, so we know that what we have
53 # stored is up to date.
54 self.storage[url] = (now, cached_content)
55

56 # Return the data from the cache, since
57 # the parsed data will be empty.
58 parsed_result = cached_content
59 elif status == 200:
60 # There is new content, so store it unless there was an error.
61 error = parsed_result.get(’bozo_exception’)
62 if not error:
63 self.storage[url] = (now, parsed_result)
64

65 return parsed_result
66

67

68 class SingleWriteMemoryStorage(UserDict.UserDict):
69 """Cache storage which only allows the cache value
70 for a URL to be updated one time.
71 """
72

73 def __setitem__(self, url, data):
74 if url in self.keys():
75 modified, existing = self[url]
76 # Allow the modified time to change,
77 # but not the feed content.
78 if data[1] != existing:
79 raise AssertionError(’Trying to update cache for %s to %s’ \
80 % (url, data))
81 UserDict.UserDict.__setitem__(self, url, data)
82 return
83

84

85 class CacheConditionalGETTest(Listing6.HTTPTestBase):
86

87 def setUp(self):
88 Listing6.HTTPTestBase.setUp(self)
89 self.cache = Cache(storage=SingleWriteMemoryStorage(),
90 timeToLiveSeconds=0, # so we do not reuse the local copy
91)
92 return
93

94 def testFetchOnceForEtag(self):
95 # Fetch data which has a valid ETag value, and verify
96 # that while we hit the server twice the response
97 # codes cause us to use the same data.
98

99 # First fetch populates the cache
100 response1 = self.cache.fetch(self.TEST_URL)

16 Chapter 2. Caching RSS Feeds With feedcache

feedcache Documentation, Release 1.4.1

101 self.failUnlessEqual(response1.feed.title, ’CacheTest test data’)
102

103 # Remove the modified setting from the cache so we know
104 # the next time we check the etag will be used
105 # to check for updates. Since we are using an in-memory
106 # cache, modifying response1 updates the cache storage
107 # directly.
108 response1[’modified’] = None
109

110 # Wait so the cache data times out
111 time.sleep(1)
112

113 # This should result in a 304 status, and no data from
114 # the server. That means the cache won’t try to
115 # update the storage, so our SingleWriteMemoryStorage
116 # should not raise and we should have the same
117 # response object.
118 response2 = self.cache.fetch(self.TEST_URL)
119 self.failUnless(response1 is response2)
120

121 # Should have hit the server twice
122 self.failUnlessEqual(self.server.getNumRequests(), 2)
123 return
124

125 def testFetchOnceForModifiedTime(self):
126 # Fetch data which has a valid Last-Modified value, and verify
127 # that while we hit the server twice the response
128 # codes cause us to use the same data.
129

130 # First fetch populates the cache
131 response1 = self.cache.fetch(self.TEST_URL)
132 self.failUnlessEqual(response1.feed.title, ’CacheTest test data’)
133

134 # Remove the etag setting from the cache so we know
135 # the next time we check the modified time will be used
136 # to check for updates. Since we are using an in-memory
137 # cache, modifying response1 updates the cache storage
138 # directly.
139 response1[’etag’] = None
140

141 # Wait so the cache data times out
142 time.sleep(1)
143

144 # This should result in a 304 status, and no data from
145 # the server. That means the cache won’t try to
146 # update the storage, so our SingleWriteMemoryStorage
147 # should not raise and we should have the same
148 # response object.
149 response2 = self.cache.fetch(self.TEST_URL)
150 self.failUnless(response1 is response2)
151

152 # Should have hit the server twice
153 self.failUnlessEqual(self.server.getNumRequests(), 2)
154 return
155

156 if __name__ == ’__main__’:
157 unittest.main()

2.9. Implementing Conditional HTTP GET 17

feedcache Documentation, Release 1.4.1

The FeedParserDict object returned from feedparser.fetch() conveniently includes the ETag and modified
timestamp, if the server sent them. On lines 38-39, once the cached feed is determined to be out of date, the ETag and
modified values are retrieved so they can be passed in to feedparser.parse() on line 42.

Since the updated client sends ETag and If-Modified-Since headers, the server may now respond with a status
code indicating that the cached copy of the data is still valid. It is no longer sufficient to simply store the response
from the server before returning it. The status code must be checked, as on line 49, and if the status is 304 then the
timestamp of the cached copy is updated. If the timestamp was not updated, then as soon as the cached copy of the
feed exceeded the time-to-live, the Cache would request a new copy of the feed from the server every time the feed
was accessed. Updating the timestamp ensures that the download throttling remains enforced.

Separate tests for each conditional GET header are implemented in CacheConditionalGETTest. To verify that
the Cache handles the 304 status code properly and does not try to update the contents of the storage on a second
fetch, these tests use a special storage class. The SingleWriteMemoryStorage raises an AssertionError if the a value
is modified after it is set the first time. An AssertionError is used, because that is how unittest.TestCase
signals a test failure, and modifying the contents of the storage is a failure for these tests.

Each test method of CacheConditionalGETTest verifies handling for one of the conditional GET headers at
a time. Since the test server always sets both headers, each test clears one value from the cache before making the
second request. The remaining header value is sent to the server as part of the second request, and the server responds
with the 304 status code.

2.10 Persistent Storage With shelve

All of the examples and tests so far have used in-memory storage options. For CastSampler, though, the cache of feed
data needed to be stored on disk. As mentioned earlier, the shelve module in the standard library provides a simple
persistent storage mechanism. It also conforms to the dictionary API used by the Cache class.

Using shelve by itself works in a simple single threaded case but it isn’t clear from its documentation whether shelve
supports write access from multiple concurrent threads. To ensure the shelf is not corrupted, a thread lock should be
used. CacheStorageLock is a simple wrapper around shelve that uses a lock to prevent more than one thread
from accessing the shelf simultaneously. Listing 9 contains the code for the CacheStorageLock and a test that
illustrates using it to combine a Cache and shelve.

2.10.1 Listing 9

1 #!/usr/bin/env python
2

3 from __future__ import with_statement
4

5 """Using Cache with shelve.
6 """
7

8 import os
9 import shelve

10 import tempfile
11 import threading
12 import unittest
13

14 from Listing6 import HTTPTestBase
15 from Listing8 import Cache
16

17 class CacheStorageLock:
18

19 def __init__(self, shelf):

18 Chapter 2. Caching RSS Feeds With feedcache

feedcache Documentation, Release 1.4.1

20 self.lock = threading.Lock()
21 self.shelf = shelf
22 return
23

24 def __getitem__(self, key):
25 with self.lock:
26 return self.shelf[key]
27

28 def get(self, key, default=None):
29 with self.lock:
30 try:
31 return self.shelf[key]
32 except KeyError:
33 return default
34

35 def __setitem__(self, key, value):
36 with self.lock:
37 self.shelf[key] = value
38

39

40 class CacheShelveTest(HTTPTestBase):
41

42 def setUp(self):
43 HTTPTestBase.setUp(self)
44 handle, self.shelve_filename = tempfile.mkstemp(’.shelve’)
45 os.close(handle) # we just want the file name, so close the open handle
46 os.unlink(self.shelve_filename) # remove empty file so shelve is not confused
47 return
48

49 def tearDown(self):
50 try:
51 os.unlink(self.shelve_filename)
52 except AttributeError:
53 pass
54 HTTPTestBase.tearDown(self)
55 return
56

57 def test(self):
58 storage = shelve.open(self.shelve_filename)
59 locking_storage = CacheStorageLock(storage)
60 try:
61 fc = Cache(locking_storage)
62

63 # First fetch the data through the cache
64 parsed_data = fc.fetch(self.TEST_URL)
65 self.failUnlessEqual(parsed_data.feed.title, ’CacheTest test data’)
66

67 # Now retrieve the same data directly from the shelf
68 modified, shelved_data = storage[self.TEST_URL]
69

70 # The data should be the same
71 self.failUnlessEqual(parsed_data, shelved_data)
72 finally:
73 storage.close()
74 return
75

76

77 if __name__ == ’__main__’:

2.10. Persistent Storage With shelve 19

feedcache Documentation, Release 1.4.1

78 unittest.main()

The test setUp() method uses tempfile to create a temporary filename for the cache. The temporary file has to
be deleted in setUp() because if the file exists, but is empty, shelve cannot determine which database module to use
to open an empty file. The test() method fetches the data from the server, then compares the returned data with the
data in the shelf to verify that they are the same.

CacheStorageLock uses a threading.Lock instance to control access to the shelf. It only manages access for
the methods known to be used by Cache. The lock is acquired and released using the with statement, which is new
for Python 2.6. Since this code was written with Python 2.5, the module starts with a from __future__ import
statement to enable the syntax for with.

2.11 Other Persistence Options

At any one time, shelve only allows one process to open a shelf file to write to it. In applications with multiple
processes that need to modify the cache, alternative storage options are desirable. Cache treats its storage object as a
dictionary, so any class that conforms to the dictionary API can be used for back end storage. The shove module, by
L. C. Rees, uses the dictionary API and offers support for a variety of back end storage options. The supported options
include relational databases, BSD-style databases, Amazon’s S3 storage service, and others.

The filesystem store option was particularly interesting for CastSampler. With shove‘s file store, each key is mapped
to a filename. The data associated with the key is pickled and stored in the file. By using separate files, it is possible
to have separate threads and processes updating the cache simultaneously. Although the shove file implementation
doesn’t handle file locking, for my purposes it was unlikely that two threads would try to update the same feed at the
same time.

Listing 10 includes a test that illustrates using shove file storage with feedcache. The primary difference in the APIs
for shove and shelve is the syntax for specifying the storage destination. Shove uses a URL syntax to indicate which
back end should be used. The format for each back end is described in the docstrings.

2.11.1 Listing 10

1 #!/usr/bin/env python
2 """Tests with shove filesystem storage.
3 """
4

5 import os
6 import shove
7 import tempfile
8 import threading
9 import unittest

10

11 from Listing6 import HTTPTestBase
12 from Listing8 import Cache
13

14 class CacheShoveTest(HTTPTestBase):
15

16 def setUp(self):
17 HTTPTestBase.setUp(self)
18 self.shove_dirname = tempfile.mkdtemp(’shove’)
19 return
20

21 def tearDown(self):
22 try:

20 Chapter 2. Caching RSS Feeds With feedcache

feedcache Documentation, Release 1.4.1

23 os.system(’rm -rf %s’ % self.storage_dirname)
24 except AttributeError:
25 pass
26 HTTPTestBase.tearDown(self)
27 return
28

29 def test(self):
30 # First fetch the data through the cache
31 storage = shove.Shove(’file://’ + self.shove_dirname)
32 try:
33 fc = Cache(storage)
34 parsed_data = fc.fetch(self.TEST_URL)
35 self.failUnlessEqual(parsed_data.feed.title, ’CacheTest test data’)
36 finally:
37 storage.close()
38

39 # Now retrieve the same data directly from the shelf
40 storage = shove.Shove(’file://’ + self.shove_dirname)
41 try:
42 modified, shelved_data = storage[self.TEST_URL]
43 finally:
44 storage.close()
45

46 # The data should be the same
47 self.failUnlessEqual(parsed_data, shelved_data)
48 return
49

50

51 if __name__ == ’__main__’:
52 unittest.main()

2.12 Using feedcache With Multiple Threads

Up to this point, all of the examples have been running in a single thread driven by the unittest framework. Now that
integrating shove and feedcache has been shown to work, it is possible to take a closer look at using multiple threads
to fetch feeds, and build a more complex example application. Spreading the work of fetching data into multiple
processing threads is more complicated, but yields better performance under most circumstances because while one
thread is blocked waiting for data from the network, another thread can take over and process a different URL.

Listing 11 shows a sample application which accepts URLs as arguments on the command line and prints the titles of
all of the entries in the feeds. The results may be mixed together, depending on how the processing control switches
between active threads. This example program is more like a traditional feed aggregator, since it processes every entry
of every feed.

2.12.1 Listing 11

1 #!/usr/bin/env python
2 """Example use of feedcache.Cache combined with threads.
3 """
4

5 import Queue
6 import sys
7 import shove
8 import threading

2.12. Using feedcache With Multiple Threads 21

feedcache Documentation, Release 1.4.1

9

10 from Listing8 import Cache
11

12 MAX_THREADS=5
13 OUTPUT_DIR=’/tmp/feedcache_example’
14

15

16 def main(urls=[]):
17

18 if not urls:
19 print ’Specify the URLs to a few RSS or Atom feeds on the command line.’
20 return
21

22 # Add the URLs to a queue
23 url_queue = Queue.Queue()
24 for url in urls:
25 url_queue.put(url)
26

27 # Add poison pills to the url queue to cause
28 # the worker threads to break out of their loops
29 for i in range(MAX_THREADS):
30 url_queue.put(None)
31

32 # Track the entries in the feeds being fetched
33 entry_queue = Queue.Queue()
34

35 print ’Saving feed data to’, OUTPUT_DIR
36 storage = shove.Shove(’file://’ + OUTPUT_DIR)
37 try:
38

39 # Start a few worker threads
40 worker_threads = []
41 for i in range(MAX_THREADS):
42 t = threading.Thread(target=fetch_urls,
43 args=(storage, url_queue, entry_queue,))
44 worker_threads.append(t)
45 t.setDaemon(True)
46 t.start()
47

48 # Start a thread to print the results
49 printer_thread = threading.Thread(target=print_entries, args=(entry_queue,))
50 printer_thread.setDaemon(True)
51 printer_thread.start()
52

53 # Wait for all of the URLs to be processed
54 url_queue.join()
55

56 # Wait for the worker threads to finish
57 for t in worker_threads:
58 t.join()
59

60 # Poison the print thread and wait for it to exit
61 entry_queue.put((None,None))
62 entry_queue.join()
63 printer_thread.join()
64

65 finally:
66 storage.close()

22 Chapter 2. Caching RSS Feeds With feedcache

feedcache Documentation, Release 1.4.1

67 return
68

69

70 def fetch_urls(storage, input_queue, output_queue):
71 """Thread target for fetching feed data.
72 """
73 c = Cache(storage)
74

75 while True:
76 next_url = input_queue.get()
77 if next_url is None: # None causes thread to exit
78 input_queue.task_done()
79 break
80

81 feed_data = c.fetch(next_url)
82 for entry in feed_data.entries:
83 output_queue.put((feed_data.feed, entry))
84 input_queue.task_done()
85 return
86

87

88 def print_entries(input_queue):
89 """Thread target for printing the contents of the feeds.
90 """
91 while True:
92 feed, entry = input_queue.get()
93 if feed is None: # None causes thread to exist
94 input_queue.task_done()
95 break
96

97 print ’%s: %s’ % (feed.title, entry.title)
98 input_queue.task_done()
99 return

100

101

102 if __name__ == ’__main__’:
103 main(sys.argv[1:])

The design uses queues to pass data between two different types of threads to work on the feeds. Multiple threads use
feedcache to fetch feed data. Each of these threads has its own Cache, but they all share a common shove store. A
single thread waits for the feed entries to be added to its queue, and then prints each feed title and entry title.

The main() function sets up two different queues for passing data in and out of the worker threads. The url_queue
(lines 23-25) contains the URLs for feeds, taken from the command line arguments. The entry_queue (line 33) is
used to pass feed content from the threads that fetch the feeds to the queue that prints the results. A shove filesystem
store (line 36) is used to cache the feeds. Once all of the worker threads are started (lines 40-51), the rest of the main
program simply waits for each stage of the work to be completed by the threads.

The last entries added to the url_queue are None values, which trigger the worker thread to exit. When the
url_queue has been drained (line 54), the worker threads can be cleaned up. After the worker threads have finished,
(None, None) is added to the entry_queue to trigger the printing thread to exit when all of the entries have
been printed.

The fetch_urls() function (lines 70-85) runs in the worker threads. It takes one feed URL at a time from the input
queue, retrieves the feed contents from a cache, then adds the feed entries to the output queue. When the item taken
out of the queue is None instead of a URL string, it is interpreted as a signal that the thread should break out of its
processing loop. Each thread running fetch_urls() creates a local Cache instance using a common storage back
end. Sharing the storage ensures that all of the feed data is written to the same place, while creating a local Cache

2.12. Using feedcache With Multiple Threads 23

feedcache Documentation, Release 1.4.1

instance ensures threads can fetch data in parallel.

The consumer of the queue of entries is print_entries() (lines 88-99). It takes one entry at a time from the
queue and prints the feed and entry titles. Only one thread runs print_entries(), but a separate thread is used so
that output can be produced as soon as possible, instead of waiting for all of the fetch_urls() threads to complete
before printing the feed contents.

Running the program produces output similar to the example in Listing 3:

$ python Listing11.py http://feeds.feedburner.com/FeedcacheReleases
Saving feed data to /tmp/feedcache_example
feedcache Releases: feedcache 0.1
feedcache Releases: feedcache 0.2
feedcache Releases: feedcache 0.3
feedcache Releases: feedcache 0.4
feedcache Releases: feedcache 0.5

The difference is that it takes much less time to run the program in Listing 11 when multiple feeds are passed on the
command line, and when some of the data has already been cached.

2.13 Future Work

The current version of feedcache meets most of the requirements for CastSampler, but there is still room to improve
it as a general purpose tool. It would be nice if it offered finer control over the length of time data stays in the cache,
for example. And, although shove is a completely separate project, feedcache would be more reliable if shove‘s file
storage were used file locking, to prevent corruption when two threads or processes write to the same part of the cache
at the same time.

Determining how long to hold the data in a cache can be a tricky problem. With web content such as RSS and Atom
feeds, the web server may offer hints by including explicit expiration dates or caching instructions. HTTP headers such
as Expires and Cache-Control can include details beyond the Last-Modified and ETag values already
being handled by the Cache. If the server uses additional cache headers, feedparser saves the associated values in the
FeedParserDict. To support the caching hints, feedcache would need to be enhanced to understand the rules for the
Cache-Control header, and to save the expiration time as well as the time-to-live for each feed.

Supporting a separate time-to-live value for each feed would let feedcache use a different refresh throttle for different
sites. Data from relatively infrequently updated feeds, such as Slashdot, would stay in the cache longer than data from
more frequently updated feeds, such as a Twitter feed. Applications that use feedcache in a more traditional way
would be able to adjust the update throttle for each feed separately to balance the freshness of the data in the cache
and the load placed on the server.

2.14 Conclusions

Original sources of RSS and Atom feeds are being created all the time as new and existing applications expose data for
syndication. With the development of mashup tools such as Yahoo! Pipes and Google’s Mashup Editor, these feeds
can be combined, filtered, and expanded in new and interesting ways, creating even more sources of data. I hope this
article illustrates how building your own applications to read and manipulate syndication feeds in Python with tools
like feedparser and feedcache is easy, even while including features that make your program cooperate with servers
to manage load.

I would like to offer a special thanks to Mrs. PyMOTW for her help editing this article.

24 Chapter 2. Caching RSS Feeds With feedcache

CHAPTER

THREE

HISTORY

1.4.1

• Moved the documentation to readthedocs.org.

• Updated packaging to use distribute instead of distutils.

1.3.1

• Updated build to work with hg and migrated code to bitbucket hosting. No source changes.

1.3

• Supports purging cache contents, based on a suggestion by Thomas Perl.

1.2

• Add a bit of documentation.

1.1

• New features based on a patch from Thomas Perl:

• Unicode handling for URLs.

• force_update flag

• offline mode flag

1.0

• Lock down the API from the last alpha version, and move to beta status.

0.5

• Add tests that illustrate using feedcache with shove.

0.4

• API changes and additional tests.

0.3

• Eliminates a race condition in the backend storage API.

0.2

• Improve the ShelveStorage backend and add an example script to illustrate how to use the cache.

0.1

• Early alpha version with in-memory and shelve storage options for the backend.

25

feedcache Documentation, Release 1.4.1

26 Chapter 3. History

CHAPTER

FOUR

LICENSE

Copyright Doug Hellmann, All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Doug Hellmann not be used in
advertising or publicity pertaining to distribution of the software without specific, written prior permission.

DOUG HELLMANN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DOUG HELL-
MANN BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CON-
TRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE
USE OR PERFORMANCE OF THIS SOFTWARE.

27

feedcache Documentation, Release 1.4.1

28 Chapter 4. License

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

29

